The inhibitory effect of KN-93 and KN-62 as a result of CaM-directed blocking animal CaMK2 and plant CDPK activation

  • D. O. Novozhylov
  • P. A. Karpov
  • D. O. Samofalova
  • M. A. Popitak
  • Ya. B. Blume

Abstract

Aim. The goal of the study was determine whether, from a molecular point of view, inhibitors KN-93 and KN-62 are capable to disrupt the functioning of plant homologs of CaMK2 and being used as tools for the experimental study of Ca2+-dependent phosphorylation in higher plants. Methods. Selected calmodulin 1 H.sapiens reference structure and reconstructed spatial structure of calcium-binding domain of CPK1 A.thaliana. We have conducted the molecular docking of calmodulin-mediated inhibitors to CaMK2: KN-93 and KN-62 for CALM1 H. sapiens and calcium-binding domain of CPK1 A. thaliana with full ligand mobility and static amino acid residues with the use of CCDC GOLD Suite. Results. We have established the presence of spatially homologous structures within CALM1 and CPK1 that might be the binding sites for KN-93 and KN-62. Performing the molecular docking we have shown the utility of those pockets from the point of binding energy for KN-93 and KN-62. We have conducted comparative analysis basing on the results of the CCDC GOLD Suite score functions (GoldScore and ASPScore). Conclusions. It has been shown that the inhibitors of animal CaMK2 - KN93 and KN62 are capable of interacting with the site of the CaM-like domain of the plant protein kinase CPK1 homologous to the similar site of animal calmodulin, which may impair its functionality.

Keywords: CaMK2, CDPK, CPK1, protein kinases, molecular docking, KN-93, KN-62. 

References

Blume Ya.B., Lloyd C.W., Yemets A.I. The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology. Berlin, Heidelberg, New York: Springer, 2008. P. 145–159. doi: 10.1007/978-1-4020-8843-8_7.

Karpov P.A., Nadezhdina E.S., Yemets A.I., Matusov V.G., Nyporko A.Yu., Shashina N.Yu., Blume Ya.B. Bioinformatic search of plant microtubule- and cell cycle related serine-threonine protein kinases. BMC Genomics. 2010. Vol. 11 (Suppl 1). S14. doi: 10.1186/1471-2164-11-S1-S14.

Sheremet Ya.A., Yemets A.I., Vissenberg K., Verbelen J.P., Blume Ya.B. Effects of Inhibitors of Serine/Threonine Protein Kinases on Arabidopsis thaliana Root Morphology and Microtubule Organization in Its Cells. Cell Tissue Biol. 2010. Vol. 4, No. 4. P. 399–409. doi: 10.1134/S1990519X10040139.

Baratier J., Peris L., Brocard, J., Gory-Fauré S., Dufour F., Bosc C., Fourest-Lieuvin A., Blanchoin L., Salin P., Job D., Andrieux A. Phosphorylation of microtubule-associated protein STOP by calmodulin kinase II. J. Biol. Chem. 2006. Vol. 281, No. 28. P. 19561–19569. doi: 10.1074/jbc.m509602200.

Wandosell F., Serrano L., Hernández M.A., Avila J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J. Biol. Chem. 1986. Vol. 261, No. 22. P. 10332–10339.

Novozhylov D.O., Karpov P.A., Blume Ya.B. Bioinformatic Search for Ca2+- and calmodulindependent protein kinases potentially associated with the regulation of plant cytoskeleton. Cytol. Genetics. 2017. Vol. 51, No. 4. P. 239–46. doi: 10.3103/S0095452717040053.

Holmfeldt P., Zhang X., Stenmark S., Walczak C.E., Gullberg M. CaMKIIgamma-mediated inactivation of the Kin I kinesin MCAK is essential for bipolar spindle formation. EMBO J. 2005. Vol. 24, No. 6. P. 1255–1266. doi: 10.1038/sj.emboj.7600601

Easley C.A., Faison M.O., Kirsch T.L., Lee J.A., Seward M.E., Tombes R.M. Laminin activates CaMK-II to stabilize nascent embryonic axons. Brain Res. 2006. Vol. 1092, No. 1. P. 59–68. doi: 10.1016/j.brainres.2006.03.099

Baucum II A.J., Shonesy B.C., Rose K.L., Colbran R.J. Quantitative proteomics analysis of CaMKII phosphorylation and he CaMKII interactome in the mouse forebrain. ACS Chem Neurosci. 2015. Vol. 6, No. 4. P. 615–631. doi: 10.1021/cn500337u.

Swulius M.T., Waxham M.N. Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci. 2008. Vol. 65, No. 17. Р. 2637–2657. doi: 10.1007/s00018-008-8086-2.

Karpov P.A., Novozhylov D.O., Isayenkov S.V., Blume Ya.B. Motif-Based Prediction of Plant Tubulin Phosphorylation Sites Associated with Calcium-Dependent Protein Kinases in Arabidopsis thaliana. Cytol Genet. 2018. Vol. 52, No. 6. Р. 428–439. doi: 10.3103/S0095452718060038.

Zhang X.S., Choi J.H. Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists. J Mol Evol. 2001. Vol. 53, No. 3. P. 214–224. doi: 10.1007/s002390010211.

Karpov P.A., Yemets A., Blume Y. Calmodulin in Action: CaM Protein Kinases as Canonical Targets in Plant Cell. In book: Calmodulin: Structure, Mechanisms and Functions. 2019; Publisher: Nova Science Publishers, Inc., USA; Part of ISBN: 978-1-53614-948-7. P. 1–38.

Pellicena P., Schulman H. CaMKII inhibitors: from research tools to therapeutic agents. Front Pharmacol. 2014. Vol. 5, No. 21. doi: 10.3389/fphar.2014.00021.

The UniProt Consortium. The Universal Protein Resource (UniProt). Nucl. Acids Res. 2008. No. 36. Р. 190–195. doi: 10.1093/nar/gkl929.

Letunic I., Doerks T., Bork P. SMART: recent updates, new developments and status in 2015. Nucl. Acids Res. 2015. No. 43. P. 257–260. doi: 10.1093/nar/gku949.

Burley S.K., Berman H.M., Kleywegt G.J., Markley J.L., Nakamura H., Velankar S. Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol. 2017. No. 1607. P. 627–641. doi: 10.1007/978-1-4939-7000-1_26.

Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012. No. 40. P. 1100–1107. doi: 10.1093/nar/gkr777

O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J Cheminform. 2011. No. 3:33. doi: 10.1186/1758-2946-3-33.

Guex N., Peitsch M. SWISS–MODEL and the Swiss–PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997. No. 18. P. 2714–2723. doi: 10.1002/elps.1150181505.

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics. 2007. Vol. 23. P. 2947–2948. doi: 10.1093/bioinformatics/btm404.

Jones G., Willett P., Glen R.C., Leach A.R., Taylor R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997. No. 267. P. 727–748. doi: 10.1006/jmbi.1996.0897.