In silico analysis of MGMT gene orthologous in the most ancient mammals Strepsirrhini

  • O. V. Pidpala
  • L. L. Lukash

Abstract

Aim. To analyze the evolution of the MGMT gene with using the example of primitive primates with an emphasis on the participation of mobile genetic elements (MGE) in this process. Methods. The homology between nucleotide sequences was determined by BLAST 2.6.1. The results of the search and identification of MGE were performed using the CENSOR program. Results. It was shown on the the example of variable exons, that non-coding sequences can play a coding role at various stages of gene evolution. In the case of the P.coquereli MGMT gene, it was found that exon sequences could be a source of an additional microintron. Based on a comparison of the sequences of Strepsirrhini primates and H.sapience, it can be assumed that fragmented sequences of the endogenous retrovirus HERV-Fc1 could participate in the formation of the coding region of human exon 5 and 3’UTR. Conclusions. The evolutionary changes in the MGMT gene occur at the level of various structural units (exons and introns), and the MGE can be not only components of introns, but also components of exons in the form of fragmented sequences which could not be identified as mobile genetic elements.

Keywords: Strepsirrhini, MGMT gene, MGE, HERV-Fc1.

References

Pegg A.E. Repair of O(6)-alkylguanine by alkyltransferases. Mutat.Res. 2000. Vol. 462, No. 2–3. P. 83–100. doi: 10.1016/S1383-5742(00)00017-X

Kaina B., Christmann M., Naumann S., Roos W.P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst). 2007. Vol. 6, No. 8. Р. 1079–1099. doi: 10.1016/j.dnarep.2007.03.008

Pegg A.E. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem. Res. Toxicol. 2011. Vol. 24, No. 5. P. 618–639. doi: 10.1021/tx200031q.

Margison G.P., Butt A., Pearson S.J., Wharton S., Watson A.J., Marriott A., Caetano C.M., Hollins J.J., Rukazenkova N., Begum G., Santibсez-Koref M.F. Alkyltransferase-like proteins. DNA Repair (Amst). 2007. Vol. 6, No. 8. P. 1222–1228. doi: 10.1016/j.dnarep.2007.03.014

Pidpala O., Lukash L. Regulatory potential of mobile genetic elements in the human MGMT gene. J. Genet. Genomic Sci. 2018. Vol. 3. P. 008–015. doi: 10.24966/GGS-2485/100008.

Perelman P., Johnson W.E., Roos C., Seuбnez H.N., Horvath J.E., Moreira M.A., Kessing B., Pontius J., Roelke M., Rumpler Y., Schneider M.P., Silva A., O’Brien S.J., Pecon-Slattery J. A molecular phylogeny of living primates. PLoS Genet. 2011. Vol. 7, No. 3. e1001342. doi: 10.1371/journal.pgen.1001342.

Chanais B., Caruso A., Hiard S., Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene. 2012. Vol. 509, No. 1. P. 7–15. doi: 10.1016/j.gene.2012.07.042.

Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 2017. Vol. 9. P. 161–177. doi: 10.1093/gbe/evw264.

de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011. Vol. 7, No. 12. e1002384. doi: 10.1371/journal.pgen.1002384.

Banit L., Calteau A., Heidmann T. Characterization of the low-copy HERV-Fc family: evidence for recent integrations in primates of elements with coding envelope genes. Virology. 2003. Vol. 312, No. 1. P. 159–168. doi: 10.1016/S0042-6822(03)00163-6

Mager D.L., Stoye J.P. Mammalian Endogenous Retroviruses. Microbiol. Spectr. 2015. Vol. 3, No. 1. MDNA3-0009-2014. doi: 10.1128/microbiolspec.MDNA3-0009-2014.

Lee H.-E., Eo J., Kim H.-S. Composition and evolutionary importance of transposable elements in humans and primates. Genes Genomics. 2015. Vol. 37, No. 2. P. 135–140. doi: 10.1007/s13258-014-0249-y

International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature. 2001. Vol. 409, No. 6822. P. 860–921. doi: 10.1038/35057062

Blomberg J., Benachenhou F., Blikstad V., Sperber G., Mayer J. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene. 2009. Vol. 448, No. 2. P. 115–123. doi: 10.1016/j.gene.2009.06.007

Vargiu L., Rodriguez-Tomn P., Sperber G.O., Cadeddu M., Grandi N., Blikstad V., Tramontano E., Blomberg J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology. 2016. Vol. 13. P. 7. doi: 10.1186/s12977-015-0232-y

Escalera-Zamudio M., Greenwood A.D. On the classification and evolution of endogenous retrovirus: human endogenous retroviruses may not be ‘human’ after all. APMIS. 2016. Vol. 124, No. 1–2. P. 44–51. doi: 10.1111/apm.12489.