Species-specific mobile genetic elements in the gene of repair enzyme MGMT in new world monkeys

  • O. V. Pidpala Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine
  • L. L. Lukash Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine

Abstract

Aim.To analyze the distribution of species-specific mobile genetic elements (MGE) in orthologs of the MGMT gene in Platyrrhina. Methods. The homology between nucleotide sequences was determined by BLAST 2.6.1. The results of the search and identification of MGE were performed  using  the  CENSOR program. Results. On the example of orthologs of the MGMT gene in New World monkeys, it has been shown that different species-specific MGE identified in their intron sequences may have different evolutionary chronologies. In the case of the element Alu2_TS, which originated in the Tarsiiformes representative, it was found that in evolutionarily close primates it undergoes deletion degradation, while fragments of the human-specific L1Hs element are found in the genomes of evolutionarily distant primates long before the formation and emergence of this retroelement. Conclusions. The chronology of  evolutionary changes in the gene MGMT and its species-specific MGE can be of different nature and occur in parallele and independently.

Keywords: Platyrrhina, MGMT gene, MGE, Alu2_TS, L1Hs.

References

Pegg A.E. Repair of O(6)-alkylguanine by alkyltransferases. Mutat.Res. 2000. Vol. 462 (2–3). P. 83–100.

Margison G.P., Butt A., Pearson S.J., Wharton S., Watson A.J., Marriott A., Caetano C.M., Hollins J.J., Rukazenkova N., Begum G., Santibanez-Koref M.F. Alkyltransferase-like proteins. DNA Repair (Amst). 2007. Vol. 6 (8). P. 1222–1228.

Pidpala O.V., Lukash L.L. Analisis of human MGMT gene orthologous in Protists. Factors in Experimental Evolution of Organisms. 2018. Vol. 22. P. 345–351. doi: 10.7124/FEEO.v22.973 [in Ukrainian]

Pidpala O.V., Lukash L.L. Formation of the L1Hs retroelement in the intron of the MGMT gene of Hominoidea. Factors in Experimental Evolution of Organisms. 2019. Vol. 24. P. 338–344. doi: 10.7124/FEEO.v24.1126 [in Ukrainian]

Pidpala O.V., Lukash L.L. In silico analysis of MGMT gene orthologous in the most ancient Mammals Strepsirrhini. Factors in Experimental Evolution of Organisms. 2020. Vol. 26. P. 305–310. doi: 10.7124/FEEO.v26.1284 [in Ukrainian]

Perelman P., Johnson W.E., Roos C., Seuanez H.N., Horvath J.E., Moreira M.A., Kessing B., Pontius J., Roelke M., Rumpler Y., Schneider M.P., Silva A., O'Brien S.J., Pecon-Slattery J. A molecular phylogeny of living primates. PLoS Genet. 2011. Vol. 7 (3). e1001342. doi: 10.1371/journal.pgen.1001342.

Chenais B., Caruso A., Hiard S., Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene. 2012. Vol. 509 (1). P. 7–15. doi: 10.1016/j.gene.2012.07.042.

Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 2017. Vol. 9. P. 161–177. doi: 10.1093/gbe/evw264.

de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. Repetitive elements may comprise over two–thirds of the human genome. PLoS Genet. 2011. Vol. 7, № 12. e1002384. doi: 10.1371/journal.pgen.1002384.

Pidpala O., Lukash L. Regulatory potential of mobile genetic elements in the human MGMT gene. J. Genet. Genomic Sci. 2018. Vol. 3. P. 008–015. doi: 10.24966/GGS–2485/100008.

Kazazian H.H.Jr., Moran J.V. The impact of L1 retrotransposons on the human genome. Nat. Genet. 1998. Vol. 19 (1). P. 19–24.

Furano A.V. The biological properties and evolutionary dynamics of mammalian LINE–1 retrotransposons. Prog. Nucleic Acid Res. Mol. Biol. 2000. Vol. 64. P. 255–294.

Boissinot S., Chevret P., Furano A.V. L1 (LINE–1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 2000. Vol. 17 (6). P. 915–928.

Smit A.F., Tуth G., Riggs A.D., Jurka J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 1995. Vol. 246 (3). P. 401–417.

Cantrell M.A., Grahn R.A., Scott L., Wichman H.A. Isolation of markers from recently transposed LINE-1 retrotranspos-ons. Biotechniques. 2000. Vol. 29 (6). P. 1310–1316.

Batzer M.A., Deininger P.L. Alu repeats and human genomic diversity. Nature Rev. Genet. 2002. Vol. 67 (3). P. 370–379.

Kapitonov V., Jurka J. The age of Alu subfamilies. J. Mol. Evol. 1996. Vol. 42. P. 59–65.

Roy–Engel A.M., Carroll M.L., El-Sawy M., Salem A.H., Garber R.K., Nguyen S.V., Deininger P.L., Batzer M.A. Non–traditional Alu evolution and primate genomic diversity. J. Mol. Biol. 2002. Vol. 316 (5). P. 1033–1040.

Schmitz, J., Noll A., Raabe C.A., Churakov G., Voss R., Kiefmann M., Rozhdestvensky T., Brosius J., Baertsch R., Clawson H., Roos C., Zimin A., Minx P., Montague M.J., Wilson R. K., Warren W. C. Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions. Nat.Commun. 2016. Vol. 7. P. 12997. doi: 10.1038/ncomms12997.