Research of ivermectin influence on Fusarium graminearum and F. oxysporum

  • Y. O. Kustovskiy Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osypovskogo str., 2A; National University of Kyiv-Mohyla Academy, Ukraine, 04070, Kyiv, Skovorody str., 2 https://orcid.org/0000-0002-1536-3897
  • A. Y. Buziashvili Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osypovskogo str., 2A https://orcid.org/0000-0002-8283-5401
  • A. I. Yemets Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osypovskogo str., 2A https://orcid.org/0000-0001-6887-0705
Keywords: ivermectin, phytopathogens, Fusarium oxysporum, Fusarium graminearum, fungistatic activity

Abstract

Aim. Determination of the ivermectin influence on plant pathogenic species of Fusarium genus; particularly, F. graminearum and F. oxysporum. Methods. The susceptibility of studied strains (F. graminearum F-55756 and F. oxysporum F-54635) to ivermectin was measured in vitro with the agar diffusion method. Ivermectin in concentrations from 0 to 3 mg/ml was poured into the wells made in media for that purpose. Further, mycelial discs of F. graminearum and F. oxysporum strains were placed into the central regions of Petri dishes, which were then maintained in the dark at 25 °С. Ivermectin influence on growth and morphology of studied strains was estimated after the 7 days using the ImageJ software and methods of statistical analysis to determine the most effective concentrations. Results. As the result, it was found that at 1 mg/ml concentration and above the fungistatic effect is observed and the 3 mg/ml concentration appeared to be the most effective one. Thus, the percentage of mycelium area in comparison with control at this concentration was 83,91 % for F. graminearum F-55756 and 69,95 % for F. oxysporum  F-54635. Conclusions. The ivermectin effective fungistatic action on the studied strains was observed giving the reason for further analysis of the ivermectin influence on other strains of Fusarium complex species and search of molecular targets of its action.

References

Ray M., Ray A., Dash S., Mishra A. Achary K.G., Nayak S., Singh S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosensors and Bioelectronics. 2017. Vol. 87. P. 708–723. doi: 10.1016/j.bios.2016.09.032.

Nayaka S.C., Wulff E.G., Udayashankar A.C., Nandini B.P., Niranjana S.R., Mortensen C.N., Prakash H.S. Prospects of molecular markers in Fusarium species diversity. Applied Microbiology and Biotechnology. 2011. Vol. 90, No. 5. P. 1625–1639. doi: 10.1007/s00253-011-3209-3.

Rahman M.Z., Ahmad K., Kutawa A.B., Siddiqui Y., Saad N., Hun T.G., Hata E.M., Hossain M.D. Biology, diversity, detection and management of Fusarium oxysporum f. sp. niveum causing vascular wilt disease of watermelon (Citrullus lanatus): a review. Agronomy. 2021. Vol. 11, No. 7. P. 1310–1334. doi: 10.3390/agronomy11071310.

Gaikpa D.S., Miedaner T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Theor. Appl. Genet. 2019. Vol. 132, No. 10. P. 2721–2739. doi: 10.1007/s00122-019-03412-2.

Doehlemann G., Okmen B., Zhu W., Sharon A. Plant Pathogenic Fungi. Microbiol. Spectr.. 2017. Vol. 5, No. 1. P. 1–23. doi: 10.1128/microbiolspec.FUNK-0023-2016.

Dallé da Rosa P., Nunes A., Borges R., Batista B., Fuentefria A.M., Goldani L.Z. In vitro susceptibility and multilocus sequence typing of Fusarium isolates causing keratitis. J. Mycol. Méd. 2018. Vol. 28, No. 3. P. 482–485. doi: 10.1016/j.mycmed.2018.05.001.

Laing R., Gillan V., Devaney E. Ivermectin – old drug, new tricks? Trends Parasitol. 2017. Vol. 33, No. 6. P. 463–472. doi: 10.1016/j.pt.2017.02.004.

Martin R.J., Robertson A.P., Choudhary S. Ivermectin: an anthelmintic, an insecticide, and much more. Trends Parasitol. 2021. Vol. 37. P. 48–64. doi: 10.1016/j.pt.2020.10.005.

Sharun K., Shyamkumar T. S., Aneesha V. A., Dhama K., Pawde A. M., Pal A. Current therapeutic applications and pharmacokinetic modulations of ivermectin. Veterinary World. 2019. Vol. 12. P. 1204–1211. doi: 10.14202/vetworld.

Lumaret J.-P., Errouissi F., Floate K., Römbke J., Wardhaugh K.. A Review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Cur. Pharm. Biotechnol. 2012. Vol. 13. P. 1004–1060. doi: 10.2174/138920112800399257.

El-Saber Batiha Batiha G., Alqahtani A., Ilesanmi O.B., Saati A.A., El-Mleeh A., Hetta H.F., y Beshbishy A.M. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals. 2020. Vol. 13, No. 8. P. 196–233. doi: 10.3390/ph13080196.

Ashraf S., Beech R.N., Hancock M.A., Prichard R.K. Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules. Int. J. Parasitol. 2015. Vol. 45, No. 9–10. P. 647–654. doi: 10.1016/j.ijpara.2015.03.010.

Westphal K.R., Heidelbach S., Zeuner E.J., Riisgaard-Jensen M., Nielsen M.E., Vestergaard S.Z., Bekker N.S., Skovmark J., Olesen C.K., Thomsen K.H., Niebling S.K., Sorensen J.L., Sondergaard T.E. The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. Int. J. Food Microbiol. 2021. Vol. 347. P. 1–5. doi: 10.1016/j.ijfoodmicro.2021.109171.

Balouiri M., Sadiki M., Ibnsouda S. K. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Analysis. 2016. Vol. 6, No. 2. P. 71–79. doi: 10.1016/j.jpha.2015.11.005.

Jacob W. Stanley, De La Torre Jack C. Dimethyl Sulfoxide (DMSO) in Trauma and Disease. Boca Raton (USA): CRC Press, 2015. 270 p.