Differences between genes of Streptomyces griseus HUT 6037 and S. coelicolor A3(2) that encode chitinases GH19

Keywords: Streptomyces, a chitinase gene, GH19 family of gydrolase, nucleotide sequence, BLASTN analysis

Abstract

Aim. The goal is to determine the similarities and differences in the primary structure of genes that determine chitinases from the GH19 family of strains S. griseus HUT6037 and S. coelicolor A3(2). Investigate the distribution in streptomycetes genomes of sequences that are similar to сhiC and сhiF genes. Methods. Information on nucleotide sequences and annotations of studied streptomycete chromosomes (including the chitinase genes S. coelicolor A3(2) and S. griseus HUT6037) is freely available in GenBank. The analysis of streptomycete nucleotide sequences was carried out using the BLASTN program from the NСBI server. Results. Significant similarities have been established between gene fragments encoding the catalytic centers of chitinases chiC, chiF and chiG. No similarity has been found between the fragments of the sequences of the chiC and chiF genes that determine their binding domains. Sequences similar to sequences encoding chitinase binding domains chiC and chiF have been found to be common in the genomes of various set of streptomycete strains. Conclusions. Sequences of chitinase genes (specifically their fragments that encode binding domains) can be used in the classification of streptomycetes in addition to those used traditionally.

References

Veliz E. A., Martínez-Hidalgo P., Hirsch A. M. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology. 2017. Vol 3 (3). P. 689–705. doi: 10.3934/microbiol.2017.3.689.

Kielak A. M., Cretoiu M. S., Semenov A. V., Sorensen S. J., van Elsas J. D. Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Applied and Environmental Microbiology. 2013. Vol. 79 (1). P. 263–272. doi: 10.1128/AEM.02546-12.

Dahiya N., Tewari R., Hoondal G. S. Biotechnological aspects of chitinolytic enzymes: a review. Applied Microbiology and Biotechnology. 2006. Vol. 71 (6). P. 773–782. doi: 10.1007/s00253-005-0183-7.

Prakash N. A. U., Jayanthi M., Sabarinathan R., Sabarinathan R., Kangueane P., Mathew L., Sekar K. Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases. Journal of Molecular Evolution. 2010. Vol. 70 (5). P. 466–478. doi: 10.1007/s00239-010-9345-z.

Monson A. M., Bradley S. G., Enquist L.W., Cruces G. J. Genetic homologies among Streptomyces violaceoruber strains. Bacteriology. 1969. Vol. 99 (3). P. 702–706. doi: 10.1128/jb.99.3.702-706.1969.

Watanabe T., Kanai R. Kawase T., Tanabe T., Mitsutomi M., Sakuda S., Miyashita K. Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology. 1999. Vol. 145 (12). P. 3353–3363. doi: 10.1099/00221287-145-12-3353.

Ohno T., Armand S., Hata T., Nikaidou N., Henrissat B., Mitsutomi M., Watanabe T. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037 J Bacteriol. 1996. 178 (17). P. 5065–5070. doi: 10.1128/jb.178.17.5065-5070.1996.

Patel S., Rauf A., Meher B. R. In silico analysis of ChtBD3 domain to find its role in bacterial pathogenesis and beyond. Microb Pathog. 2017. 110 (9). P. 519–526. doi: 10.1016/j.micpath.2017.07.047.