Aprobation of common wheat molecular markers for the determination of the allelic composition of gliadins of Triticum spelta L.

Keywords: wheat, Triticum spelta L., grain, allelic variants of gliadins, polymorphism, genotype, Gli-B1 locus, molecular markers

Abstract

Aim. The purpose of this work was to test and compare the methods of storage proteins electrophoresis in acid PAGE and PCR with wheat primers for spelt samples and to evaluate their using for the identification of allelic variants of gliadins. Methods. Research was conducted on samples of eight varieties of Tr. spelta using electrophoresis of storage proteins in acid PAAG and PCR with allele-specific primers designed to the Gli-B1 locus of common wheat. PCR products were separated by 7 % PAAG, gels were stained with argentum (II) nitrate. Results. The possibility of using molecular markers to identify allelic variants of spelt gliadins was shown. Using PCR using allele-specific primers for the Gli-B1 locus, five alleles were detected, two of which were also described for Tr. aestivum species. According to the results of electrophoresis and based on PCR results, six allelic variants of gliadins, divided into two groups, were identified. Conclusions. Approbation of the PCR for the species Tr. spelta using allele-specific primers developed for common wheat, showed the polymorphism and the possibility of using primers to identify allelic variants of gliadins for spelt wheat. Compared to the method of electrophoresis of reserve proteins in acidic PAAG, the PCR method is much easier to interpret the results, but it does not allow to detect all the polymorphism obtained on electrophoregrams of reserve proteins.

References

Poltoretskyi S., Hospodarenko H., Liubych V., Poltoretska N., Demydas H. Toward the theory of origin and distribution history of Triticum spelta L. Ukrainian Journal of Ecology. 2018. Vol. 8 (2). P. 263–268.

Sichkar S. M., Morgun V. V., Dubrovna O. V. Inheritance of morphological characteristics in hybrids F1–F2 Triticum spelta x T. aestivum. Fiziol. rast. i gen. 2016. Vol. 48 (4). P. 344–355. doi: 10.15407/frg2016.04.344

Bonafaccia G., Galli V., Francisci R., Mair V., Skrabanja V., Kreft I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000. Vol. 68 (4). P. 437–441. doi: 10.1016/S0308-8146(99)00215-0

Dahlstedt L. Spelt Wheat (Triticum aestivum ssp. spelta (L.)): An alternative crop for ecological farming systems. In: “Spelt and Quina” Working Group Meeting (Wageningen, 24–25 October 1997). Wageningen, 1997. P. 3–6.

Ruzhitskaya О. М., Borysova О. V. Nasinnieva produktyvnist’ ta vmіst bilka v zerni pshenytsi spel’ty (Triticum spelta L.) za vyroshchuvannia na riznomu foni mineral’noho zhyvlennia. Selektsiyno-henetychna nauka i osvita (Pariievi chytannia). 2017. 292 p. [in Ukrainian]

Shelepov V. V. Gavriliuk I. N., Vergunov V. A. Pshenitsa: biologiia selektsiia morfologiia semenovodstvo. NNSKhB NAAN. Кyiv : Logos, 2013. 498 p. [in Russian]

Ninieva A.K., Kozub N.O., Sozinov І.O., Leonov O.Yu., Rybalka O.I., Tverdokhleb E.V., Boguslavsky R. L. Characterization of triticum spelta l. Accessions for grain quality and electrophoretic spectra of storage proteins. Visn. ukr. tov. genet. sel. 2013. Vol. 11 (1). P. 96–105. [in Ukrainian]

Schober T.J., Bean S.R., Kuhn M. Gluten proteins from spelt (Triticum aestivum ssp. spelta) cultivars: A rheological and size-exclusion highperformance liquid chromatography study. J. Cereal Sci. 2006. Vol. 44. P. 161–173. doi: 10.1016/j.jcs.2006.05.007

Dong Z., Yang Y., Li Y., Zhang K., Lou H., An X., (2013) Haplotype Variation of Glu-D1 Locus and the Origin of Glu-D1d Allele Conferring Superior End-Use Qualities in Common Wheat. PLoS ONE. 2013. Vol 8 (9). P e74859. doi: 10.1371/journal.pone.0074859.

Wang L., Li G., Peña R. J., Xia X., He Z., Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). Journal of Cereal Science. 2010. Vol. 51 (3). P. 305–312. doi: 10.1016/j.jcs.2010.01.005.

Zhang W., Gianibelli M., Rampling M. L., Gale K. R. Identification of SNPs and development of allele-specific PCR markers for γ-gliadin alleles in Triticum. Theoretical and Applied Genetics. 2003. Vol. 107. P. 130–138. doi: 10.1007/s00122-003-1223-2

Devos K. M., Bryan G. J., Collins A. J., Stephenson P., Gale M. D. Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor. Appl. Genet. 1995. Vol. 90. P. 247–252. doi: 10.1007/BF00222209

Metakovsky E., Pasqual L., Vaccino P., Rodrigues-Quijano M., Popovych Yu., Chebotar S., Rogers W. Heteroalleles in common wheat: Multiple differences between allelic variants of the Gli-B1 locus. Int. J. of Molecular Sciences. 2021. Vol. 22. P. 1832. doi: 10.3390/ijms22041832

Popovych Yu. A., Blagodarova O. M., Chebotar S. V. Polymorphism of Taglgap microsatelite locus and its connection with allelelic varieties of gliadins of bread wheat. Visnyk ONU. Biologia. 2021. Vol. 49 (2). P. 73–85. doi: 10.18524/2077-1746.2021.2(49).246889 [in Ukrainian]

Poperelia F. O. Try osnovni henetychni systemy iakosti zerna ozymoi m’iakoi pshenytsi. Realizatsiia potentsiynykh mozhlyvostey sortiv ta hibrydiv Selektsiyno-henetychnoho instytutu v umovakh Ukrainy. Zbirnyk naukovykh prats SHI. Odesa, 1996. P. 117–132. [in Ukrainian]

Metakovsky E., Melnik V., Rodriguez-Quijano M., Upelniek V., Carrillo M. A catalog of gliadin alleles: Polymorphism of 20th century common wheat germplasm. The Crop Journal. 2018. Vol. 6. P. 628–641. doi: 10.1016/j.cj.2018.02.003

Syvolap Yu. M. Yspol’zovanye PTsR-analyza v henetyko-selektsyonnykh yssledovanyiakh. Kyev : Ahrarna nauka, 1998. P. 8–33. [in Russian]

Promega Technical Manual. USA : Gene Print. STR Systems, 1999. P. 52.