Impact of cytomixis on the microspogenesis and formation of unreduced pollen grains in monocots

  • E. A. Kravets Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kiev, Osipovskii str., 2a
  • S. H. Plohovskaya Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kiev, Osipovskii str., 2a
  • I. I. Horyunova Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kiev, Osipovskii str., 2a
  • A. I. Emets Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kiev, Osipovskii str., 2a
  • Ya. B. Blume Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kiev, Osipovskii str., 2a

Abstract

Aim. Despite significant progress in the investigation of cytomixis its functional role and effect on the course of meiosis as well as mechanisms of 2n pollen grains formation is still not completely clear. We have studied the destination of cytomictic chromatin as well the mechanisms of unreduced microspores formation in species of monocots with spontaneous cytomixis. Methods. Light and fluorescent microscopy. Results. The cytomictic chromatin forms additional meiotic chromosomes in the recipient microsporocytes. Many of these meiotic chromosomes undergo rearrangement and fragmentation but retain their bivalent organization. Conclusions. Cytogenetic anomalies of microsporogenesis caused by activation of cytomixis in prophase may reflect meiosis stabilization mechanisms by assimilation and adaptation or diminution and reutilization of the introduced DNA. The main mechanism of polyploidization of microsporocytes and pollen grains in studied monocots is the restitution of the first meiotic division via the formation of a meta-anaphase 1 block.
Keywords: cytomixis, microsporogenesis, additional (recipient) chromosomes, meta-anaphase 1 block, Lilium croceum Chaix., Allium сера L., Allium fistulosum L.

References

Mursalimov S., Permyakova N., Deineko E., Houben A., Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front. Plant. Sci. 2015. V. 6 (846). doi: 10.3389/fpls.2015.00846

Mursalimov S.R., Sidorchuk Y.V., Baiborodin S.I., Deineko E.V. Distribution of telomeres in the tobacco meiotic nuclei during cytomixis. Cell Biol. Int. 2015. V. 39 (4). С. 491-495. doi: 10.1002/cbin.10406

Lattoo S.K., Khan S., Bamotra S., Dhar A.K. Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq. an additiomal strategy and possible implications. J. Biosci. 2006. V. 31. P. 629-637. doi: 10.1007/BF02708415

Ghaffari S.M. Occurrence of diploid and polyploidy microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr. J. Biotech. 2006. V. 5. P. 1450-1453.

Reis A.C., Sousa S.M., Viccini L.F. High frequency of cytomixis observed at zygotene in tetraploid Lippia alba. Plant Syst. Evol. 2015. V. 302 (1). P. 121-127. doi: 10.1007/s00606-015-1249-3

Singhal V.K., Kumar P. Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeate Royle). J. Biosci. 2008. V. 33. P. 371-380. doi: 10.1007/s12038-008-0057-0

Falistocco E., Tosti N., Falcinelli M. Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J. Heredity. 1995. 86. P. 448-453. doi: 10.1093/oxfordjournals.jhered.a111619

Malallah G.A. Cytomixis and it's possible evolutionary role in a кuwaiti population of Diplotaxis harra (Brassicaceae). Comp. Cytogen. 2011. V. 5 (3). P. 143-161.

Kravets E.A. Cytomixis and its role in the regulation of plant fertility. Rus. J. Dev. Biol. 2013. V. 44 (3). P. 113-128. doi: 10.1134/S1062360413030028

Kravets E.A., Sidorchuk Yu.V., Horyunova I.I., Plohovskaya S.H., Mursalimov S.R., Deineko E.V., Yemets A.I., Blume Ya.B. Intra- and intertissular cytomictic interactions in the microsporogenesis of mono- and dicotyledonous plants. Cytol. Genet. - 2016. V. 50 (5). P. 267-277. doi: 10.3103/S0095452716050054

Ramanna M.S., Jacobsen E. Relevance of sexual polyploidization for crop improvement a review. Euphytica. 2003. V. 133. P. 3-18. doi: 10.1023/A:1025652808553

Dewitte A., Eeckhaut T., Van Huylenbroeck J., Van Bockstaele E. Meiotic aberrations during 2n pollen formation in Begonia. Heredity. 2010. V. 104. P. 215-223. doi: 10.1038/hdy.2009.111

Zheng G.C., Yang Q.R., Zheng Y.R. The relationship between cytomixis and chromosome mutation and karyotype evolution in lily. Caryologia. 1987. 40. P. 243-259. doi: 10.1080/00087114.1987.10797827

Cai X., Xu S.S. Meiosis-driven genome variation in plants. Curr. Genomics. 2007. V. 8. P. 151-161. doi: 10.2174/138920207780833847

Zhou S.Q. Viewing the difference between the diploid and the polyploid in the light of the upland cotton aneuploidy. Hereditas. 2003. V. 38. P. 65-72. doi: 10.1034/j.1601-5223.2003.01689.x

Kalinka A., Achrem M., Rogalska S.M. Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids. Nucleus. 2010. V. 53. P. 69-83. doi: 10.1007/s13237-010-0002-0