Glyphosate selection of maize transgenic callus lines among genotypes of Ukrainian plant breeding

  • I. O. Nitovska Institute of Cell Biology and Genetic Engineering, Natl. Acad. Sci. of Ukraine, Ukraine, 03143, Kyiv, Akad. Zabolotnoho str., 148
  • I. K. Komarnytskyi Institute of Cell Biology and Genetic Engineering, Natl. Acad. Sci. of Ukraine, Ukraine, 03143, Kyiv, Akad. Zabolotnoho str., 148
  • B. V. Morgun Institute of Cell Biology and Genetic Engineering, Natl. Acad. Sci. of Ukraine, Ukraine, 03143, Kyiv, Akad. Zabolotnoho str., 148

Abstract

Aim. Glyphosate selection has a number of advantages over other commonly used selectable markers for maize. There is some natural variability within maize germplasm for degree of sensitivity to glyphosate. We investigated the selective effect of glyphosate for production transgenic maize callus after Agrobacterium-mediated transformation among geno-types of Ukrainian plant breeding. Methods. Agrobacterium-mediated transformation, glyphosate selection in vitro, and PCR analysis were used to obtain transgenic maize callus and to confirm its status. Results. An efficient selectable marker system for production transgenic maize callus lines tolerant to herbicide glyphosate was proposed. Calluses of four maze genotypes of Ukrainian plant breeding and pCB135 vector containing CP4epsps gene were used in Agrobacterium-mediated transformation experiments. Three callus maize lines of DK267×PLS61 genotype containing CP4epsps gene were obtained. Conclusions. The use of glyphosate as a selective agent after Agrobacterium-mediated transformation proved to be effective for transgenic maize callus lines production containing the gene CP4epsps. The success of Agrobacterium-mediated transformation of maize callus strongly depended on the genotype of source ma-terial.

Keywords: Agrobacterium-mediated maize transformation, CP4epsps gene, glyphosate selection, PCR analysis.

References

EU Register of Authorised GMOs. Regulation EC 1829/2003 – 2014. Retrieved from: http://ec.europa.eu/food/dyna/gm_register/index_en.cfm.

USDA (2013). Grain: world markets and trade. Circular series FG-05-13. Retrieved from: http://www.fas.usda.com/psonline/circulars/grain.pdf.

Amrhein N., Deus B., Gehrke P., Steinrьcken H.C. The site of the inhibition of the shikimate pathway by glyphosate, II: interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980. V. 66(5). P. 830-834. doi: 10.1104/pp.66.5.830

Zhou H., Arrowsmith J.W., Fromm M.E., Hironaka C.M., Taylor M.L., Rodriguez D., Pajeau M.E., Brown S.M., Santino C.G., Fry J.E. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 1995. V. 15. P. 159-163. doi: 10.1007/BF00193711

Howe A.R., Gasser C.S., Brown S.M., Padgette S.R., Hart J., Parker G.B., Fromn M.E., Armstrong C.L. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol. Breed. 2002. V. 10. P. 153-164. doi: 10.1023/A:1020396708088

Chhapekar S., Raghavendrarao S., Pavan G., Ramakrishna C., Singh V.K., Phanindra M.L., Dhandapani G., Sreevathsa R., Ananda Kumar P. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Rep. 2015. V. 34(5). P. 721-731. doi: 10.1007/s00299-014-1732-2

Padgette S.R., Kolacz K.H., Delannay X., Re D.B., LaVallee B.J., Tinius C.N., Rhodes W.K., Otero Y.I., Barry G.F., Eichholtz D.A., Peschke V.M., Nida D.L., Taylor N.B., Kishore G.M. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 1995. V. 35. P. 1451-1461. doi: 10.2135/cropsci1995.0011183X003500050032x

Shrawat A.K., Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnology J. 2006. V. 4(6). P. 575-603. doi: 10.1111/j.1467-7652.2006.00209.x

Sakhno L.O., Komarnyts'kyy I.K., Kuchuk M.V. Stiykist' do hlifosatu i hliufozinatu v pokolinniakh T1-T2 biotekhnolohichnykh roslyn ripaku (Brassica napus L.). Visn. Ukr. tov-va henetykiv i selektsioneriv. 2015. V. 13(1). P. 3-10. [in Ukrainian]

Sidorov V., Duncan D. Agrobacterium-mediated maize transformation: immature embrious versus callus. Methods in molecular biology: transgenic maize. M. Paul Scott (ed.). USA: Humana press, 2009. P. 47-58. doi: 10.1007/978-1-59745-494-0_4

Forlani G., Racchi M.L. Glyphosate tolerance in maize (Zea mays L.). Differential response among inbred lines. Euphytica. 1995. V. 82. P. 157-164. doi: 10.1007/BF00027062

Frascaroli E., Landi P., Sari Gorla M., Ottaviano E. Variability of pollen and plant responses to glyphosate in maize. J. Genet. Breed. 1992. V. 46. P. 49-56.

Nitovs'ka I.O., Dupliy V.P., Rudas V.A, Abraimova O.Ie., Satarova T.M., Morhun B.V. Optymizatsiia umov transformatsii kaliusnykh liniy kukurudzy za dopomohoiu detektsii tranziientnoi ekspresii hena beta-hliukuronidazy. Dosiahnennia i problemy henetyky, selektsii ta biotekhnolohii: zbirnyk naukovykh prats' IX z'izdu UTHiS. K.: Lohos, 2012. V. 4. P. 587-592. [in Ukrainian]

Stewart N.C.Jr., Laura E. Via a rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. BioTechnique. 1993. V. 14(5). P. 748-749.

Lipp Joаo K.H., Brown T.A. Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58 C1 Rifr::pGSFR1161 in the presence of acetosyringone. Plant Cell Rep. 1993. V. 12. P. 422-425. doi: 10.1007/BF00234705

Cannell M.E., Doherty A., Lazzeri P.A., Barcelo P. A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theor and Appl Genet. 1999. V. 99. P. 772-784. doi: 10.1007/s001220051296

Brody J.R., Kern S.E. History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem. 2004. V. 333. Р. 1-13. doi: 10.1016/j.ab.2004.05.054