Corn plant comparative reactions to artificial dehydration

  • L. Ye. Serhieieva Institute of Plant Physiology and Genetics of National Academy of Science of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/17
  • S. I. Mykhalska Institute of Plant Physiology and Genetics of National Academy of Science of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/17
  • V. M. Kurchii Institute of Plant Physiology and Genetics of National Academy of Science of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/17
  • O. M. Tyshchenko Institute of Plant Physiology and Genetics of National Academy of Science of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/17

Abstract

Aim. There are maize plants of inbred line L-370 (control) and from T4 progeny of plants transformed via in planta Agrobacterium-mediated transformation with LBA4404 strain harboring pBi2E with double-stranded RNA-suppressor of the proline dehydrogenase gene. The free proline and sucrose levels, sucrose/fructose ratio during period of desicca-tion/rehydration were investigated. Methods. Maize T4 progeny and initial plants of L-370 line were cultivated in con-tainers. Variants were tested under short term (4 days) dehydration and after 3.5 hours of rehydration. The free proline and carbohydrates levels were estimated at those times of the experiment. Results. The short-term water deficit did not create pathological changes in plants. But the free proline levels rose in leaves of all variants. At the same time the ami-no acid levels under stress condition in T4 plans were higher than in L-370-plants. After 3.5 hours of rehydration the proline content in control plants decreased and stayed without changes in T4 plans. In T4 plants the carbohydrate meta-bolism systems energy maintained the stability of the sucrose/fructose ratio during the whole time of experiment. Conclusions. The T4 plants high level of water stress tolerance is a possible result of transgene activity.
Keywords: Zea mays, Agrobacterium-mediated transformation, T4-progeny, short-term water stress, dehydration, proline sucrose.

References

Tishchenko E.N. Geneticheskaia inzheneriia s ispol'zovaniem genov metabolizma L-prolina dlia povysheniia osmotolerantnosti rasteniy. Fiziologiia i biokhimiia kul't. rasteniy. 2013. V. 45(31). P. 489-500. [in Russian]

Mikhal'skaia S.I., Sergeeva L.E., Matveeva A.Iu., Kobernik N.I., Kochetov A.V., Tishchenko E.N., Morgun V.V. Povyshenie soderzhaniia svobodnogo prolina v osmotolerantnykh rasteniiakh kukuruzy s dvukhtsepochechnym RNK-supresorom gena prolindegidrogenazy. Fiziologiia rasteniy i genetika. 2014. V. 46(6). P. 482-489. [in Russian]

Szabados L., Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010. V. 15. P. 89-97. doi: 10.1016/j.tplants.2009.11.009

Sakalo V.D., Larchenko K.A., Kurchiy V.M. Syntez i metabolizm sakharozy v lystkakh prorostkiv kukurudzy za umov vodnoho defitsytu. Fiziologiia i biokhimiia kul't. rasteniy. 2009. V. 41(4). P. 305-313. [in Ukrainian] doi: 10.1108/00197850910983893

Ho S.-L., Chao Y.-C., Tong W.-F., Yu S.-M. Sugar coordinately and differentially regulates growth - and stress-related gene expression via a complex signal transduction network and multiple control mechanism. Plant Physiol. 2001. V. 125(4). P. 877-890. doi: 10.1104/pp.125.2.877

Hanson J., Hanssen M., Wiese A., Hendriks M.M., Smeekens S. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of asparagine synthetase 1 and proline dehydrogenase 2. Plant J. 2008. V. 53. P. 935-949. doi: 10.1111/j.1365-313X.2007.03385.x

Satoh R., Fujita Y., Nakashima K., Shinozaki K., Yamaguchi-Shinozaki K. A novel subgroup of bZIP protein functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol. 2004. V. 45. P. 309-317. doi: 10.1093/pcp/pch036

Andriushchenko V.K., Saianova V.V., Zhuchenko A.A., D'iachenko N.I., Chilikina L.A., Drozdov V.V., Korochkina S.K., Cherep G.I., Medvedev V.V., Niutin Iu.I. Modifikatsiia metoda opredeleniia prolina dlia vyiavleniia zasukhoustoychivykh form roda Lycopersicon Tourn. Izvestiia Akademii Nauk Moldavskoy SSR. 1981. No. 4. P. 55-60. [in Russian]

Arata Y., Fukushima E., Endo T. Effect of sucrose on the protection of photosinthetic activity under salt stress. Plant and Cell Physiol. 1999. V. 40. Suppl. P. 144.

Iwahashi H., Obuchi K., Fuji S., Komatsu Y. The correlative evidence suggesting that trealose stabilizes membrane structure in the yeast Saccharomyces cerevisiae. FEBS Lett. 1995. V. 255. P. 5518-5522.

Caffery M., Tonseca V., Leopold A.C. Lipid-sugar interaction Reveaauce to anhydrous biology. Plant Physiol. Proline. 1988. V. 86. P. 754-758. doi: 10.1104/pp.86.3.754

Stein H., Honig A., Miller G., Erster O., Eilerberg H., Csonka L.N. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradion in plants. Plant Sci. 2011. V. 181. P. 140-150. doi: 10.1016/j.plantsci.2011.04.013