Receiving of genetic-modified wheat plants with heterolous ornitin-δ-aminotransferase gene

  • O. M. Honcharuk
  • O. V. Dubrovna


Aim. Receiving of genetically modified plants of bread wheat with heterologous ornithine‑δ‑aminotransferase gene. Methods. Agrobacterium-mediated transformation of callus cultures in vitro, PCR-analysis. Results. By Agrobacterium-mediated transformation of the morphogenic calluses of bread wheat (Triticum aestivum L.) using the AGLO strain containing the binary vector pBi-OAT with the target ornithine-δ-aminotransferase (oat) and selective neomycinphosphotransferase II (nptII), transgenic plants-regenerators have been obtained. Conclusions. As a result of the genetic transformation of Zimoyarka variety, 12 wheat regenerants were obtained in the genome which revealed a complete integration of the genetic construct containing the oat and nptII transgenes.

Keywords: Triticum aestivum L., Agrobacterium-mediated transformation, ornithine‑δ‑aminotransferase gene, PCR-analysis.


Mamrutha H.M., Kumar R., Venkatesh K., Sharma P., Kumar R., Tiwari V., Sharma I. Genetic transformation of wheat – present status and future potential. J. of Wheat Research. 2014. Vol. 6(2). P. 107–119. doi: 10.1007/s11816-011-0213-0

Binka F., Orczyk W., Nadolska-Orczyk A. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack): role of the binary vector system and selection Cassettes. J. of Applied Genetics. 2012. Vol. 53. P. 1–8. doi: 10.1007/s13353-011-0064-y

Martinelli T., Whittaker A., Bochicchio A., Vazzana C., Suzuki A., Masclaux-Daubresse C. Amino acid pattern and glutamate metabolism during dehydration stress in the ‘resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. J Exp. Bot. 2007. Vol. 58, Issue 11. P. 3037–3046. doi: 10.1093/jxb/erm161

Stranska J., Kopecny D., Kopecna M., Snégaroff J., Sebela M. Biochemical characterization of pea ornithine-d-aminotransferase: Substrate specificity and inhibition by di- and polyamines. Biochimie. 2010. Vol. 92 (8). P. 940–948. doi: 10.1016/j.biochi.2010.03.026

Funck D., Stadelhofer B., Koch W. Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol. 2008. Vol. 8:40. doi: 10.1186/1471-2229-8-40.

Cañas R.A., Villalobos D.P., Díaz-Moreno S.M., Cánovas F.M., Cantón F.R. Molecular and Functional Analyses Support a Role of Ornithine-d-Aminotransferase in the Provision of Glutamate for Glutamine Biosynthesis during Pine Germination. Plant Physiol. 2008. Vol. 148. P. 77–88. doi: 10.1104/pp.108.122853

Mattioli R., Costantino P., Trovato M. Proline accumulation in plants: not only stress. Plant Signal Behav. 2009. Vol. 4, (11). P. 1016–1018. doi: 10.4161/psb.4.11.9797

Roosens N., Bitar F., Loenders K. Overexpression of ornithine-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breed. 2002. Vol. 9 (2). P. 73–80. doi: 10.1023/A:1026791932238

Page A., Minocha R., Minocha S. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells. Amino Acids. 2012. Vol. 42 (1). P. 295–308. doi: 10.1007/s00726-010-0807-9

Wu L., Fan Z., Guo L., Wu L. Over-expression of an Arabidopsis OAT gene enhances salt and drought tolerance in transgenic tobacco. Chinese Sci. Bull. 2003. Vol. 48, № 23. P. 2594–2600. doi: 10.1360/03wc0218

Honcharuk O.M., Bavol A.V., Dubrovna O.V. Morphogenesis in the culture of apical meristems of high-yielding winter wheat varieties. Plant physiology and genetics. Vol. 45, No. 3. P. 245–251. doi: 10.1079/IVP2001267

Sidorov V., Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods Mol Biol. 2009. Vol. 526. P. 47–58. doi: 10.1007/978-1-59745-494-0_4