Genetic transformation of bread wheat using vector constructs containing the genes of proline metabolism

  • S. S. Voronova Institute of Plant Physiology and Genetics, NAS of Ukraine, Ukraine, 03022, Kyiv, str. Vasylkivska, 31/17
  • A. M. Goncharuk Institute of Plant Physiology and Genetics, NAS of Ukraine, Ukraine, 03022, Kyiv, str. Vasylkivska, 31/17
  • A. V. Bavol Institute of Plant Physiology and Genetics, NAS of Ukraine, Ukraine, 03022, Kyiv, str. Vasylkivska, 31/17
  • O. V. Dubrovnaya Institute of Plant Physiology and Genetics, NAS of Ukraine, Ukraine, 03022, Kyiv, str. Vasylkivska, 31/17

Abstract

Aim. To perform Agrobacterium-mediated transformation in planta of plants of the bread wheat variety Zymoyarka using the strain AGLO with vector constructs containing the genes of proline metabolism: pBi2E containing the double stranded RNA suppressor of proline dehydrogenase  developed on the basis of Arabidopsis ProDH1 gene (ds-RNA suppressor of ProDH1) and pBi-OAT containing the gene of ornithine aminotransferase of Medicago truncatula. Methods. Agrobacterium-mediated genes transfer in planta was carried out during wheat pollination. The presence of transgenes within the genome of transformed plants was determined by PCR analysis of DNA isolated from the leaves of plants of T1 generation. Results. The frequency of transformation with the full insertion of the genetic construct was 1.53% using the vector construct pBi2E and 5.43% using a vector construct pBi-OAT. Conclusions. It is experimentally proved the possibility of genetic transformation of wheat with the strain AGLO, containing the plasmid pBi2E with double-stranded RNA suppressor of proline degidrogenase gene and the plasmid pBi-OAT containing the gene of ornithine aminotransferase by Agrobacterium-mediated transformation in planta.

Keywords: Agrobacterium-mediated transformation, Triticum aestivum, genes of proline metabolism.

References

El-Mangoury K., Abdrabou R., Yasien M., Fahmy A. Optimization of a transformation system for three Egyptian wheat cultivars using immature embryo-derived callus via microprojectile bombardment. Arab. J. Biotech. 2006. Vol. 9(1). P. 175–188.

Xia A., Li Z., He C., Chen H., Richard B. Transgenic plant regeneration from wheat (Triticum aestivum L) mediated by Agrobacterium tumefaciens. Acta Physiol. Sin. 1999. Vol. 25. P. 22–28.

Чумаков М. И., Моисеева Е. М. Технологии агробактериальной трансформации растений in planta. Биотехнология. 2012. №1. С. 8 –20.

Moiseeva Y. M., Velikov V. A., Volokhina I. V., Gusev Yu. S., Yakovleva O. S., Chumakov M. I. Agrobacterium-mediated transfоrmation of maize with antisense suppression of the proline dehydrogenase gene by an in planta method. British Biotechnology Journal. 2014. Vol. 4(2). P. 116–125.

Supartana P., Shimizu T., Nogawa M., Shioiri H., Nakajima T., Haramoto T., Nozue T., Kojima M. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering. 2006. Vol. 102(3). P. 162–170.

Zhao T., Zhao S., Chen H., Zhao Q., Hu Z., Hou Z., Xia Z. Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep. 2006. Vol. 25. P. 1199–1204.

Szabados L., Savoure A. Proline: a multifunctional amino acid. Trends in Plant Science. 2009. Vol. 15(2). P. 89 –97.

Kishor P., Sangam P., Amrutha R. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implication in plant growth and abiotic stress tolerance. Curr. Sci. 2005. Vol. 88(3). P. 424–438.

Roosens N., Bitar F., Loenders F. Overexpression of ornithine–aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breed. 2002. Vol.9(2). Р. 73– 80.

Nanjo F., M. Kobayashi M., Yoshiba Y. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 1999. Vol. 461. P. 205–210.

Kumar V., Shriram V., Kishor K. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Рlant Biotechnol. Rep. 2010. Vol. 4(1). Р. 37– 48.

Hur J., Jung K., Lee C. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci. 2004. Vol. 167. P. 417–426.

Karthikeyan A., Pandian S., Ramesh M. Transgenic indica rice cv. ADT 43 expressing a D1–pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell, Tissue, Organ Culture. 2011. Vol. 107(3). P. 383–395.

Wu L., Fan Z., Guo L. Over–expression of an Arabidopsis OAT gene enhances salt and drought tolerance in transgenic rice. Chinese Sci. Bull. 2003. Vol. 48(23). P. 2594–2600.

Vendruscolo E., Schuster I., Pileggi M. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Plant Physiol. 2007. Vol. 164(10). P. 1367–1376.