Long-term videomicroscopy of living cells in vitro: Opportunities and prospects

  • Y. I. Sheiko Institute of Genetics and Cytology of NAS of Belarus, Belarus, 220072, Minsk, Akademicheskaya str., 27
  • N. A. Balashenko Institute of Genetics and Cytology of NAS of Belarus, Belarus, 220072, Minsk, Akademicheskaya str., 27
  • O. V. Kvitko Institute of Genetics and Cytology of NAS of Belarus, Belarus, 220072, Minsk, Akademicheskaya str., 27
  • I. I. Koneva Institute of Genetics and Cytology of NAS of Belarus, Belarus, 220072, Minsk, Akademicheskaya str., 27
  • S. E. Dromashko Institute of Genetics and Cytology of NAS of Belarus, Belarus, 220072, Minsk, Akademicheskaya str., 27

Abstract

Aim. Intravital video microscopy of cells is a highly informative approach to the study of cell cultures. Often, this method allows refining and complementing the data obtained by researchers at the visual study of living cultures or fixed preparations. The main problem of the long intravital video microscopy is the maintenance of cell activity. To solve this problem, video-computer "Tsitomir" has been developed. Methods. During cultivation the images of the cell culture areas (from one to several hundred) specified by researcher are captured at regular intervals (time-lapse method of photography). A motorized sample stage allows moving the culture vessel with the joystick, as well as to scan the specified cell culture sites automatically. Results. In our investigations, we studied such processes as cell division, death, differentiation, motility and massive changes of cell cultures associated with cancerous transformation, including abnormal morphological changes and cell aggregation. The effectiveness of the intravital cell microscopy use to test the anti-cancer drugs is shown as well. Conclusions. Opportunities of video-complex enable its use in biomedical research, in the development of cell technologies, the study of the action of pharmacological agents and sanitary-hygienic regulation of chemicals in the cell assay systems. Obtained through "Tsitomir" photos and videos can also be used as educational material for students of biological, medical and agricultural universities.

Keywords: cell culture, intravital videomicroscopy, differentiation, proliferation, anti-cancer protection.

References

Shteyn G.I. Konfokalnaia mikroskopiia: mify i realnost. Materialy Shkoly-seminara “Konfokalnaia mikroskopiia v biologii i meditsine”, Moskva–Zvenigorod, September 26–30, 2005. 2005. http://www.cytspb.rssi.ru/lab_stein/stein1.pdf.

Dromashko S.E., Kvitko O.V., Koneva I.I. et al. Kompiuternaia videomikroskopiia zhivykh kletok: uchebno-metodicheskoe posobie. Minsk: IPNK, 2010. 37 p.

Sheyko Y.I., Kvitko O.V., Koneva I.I. et al. Videomikroskopiia zhivykh kletok in vitro s pomoshchiu videokompleksa “Tsitomir”. Metodicheskie rekomendatsii. Minsk: OOO “Polikraft”, 2014. 52 p.

Swim H.E., Parker R.F. Culture characteristics of human fibroblasts propagated serially. Amer. J. Hyg. 1957. Vol. 66(1). P. 235–243. doi: 10.1093/oxfordjournals.aje.a119897

Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 1961. Vol. 25(3). P. 177–185. doi: 10.1016/0014-4827(61)90192-6

Bayreuther K., Rodemann H.P., Hommel R. et al. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc. Nat. Acad. Sci. USA. 1988. Vol. 85. P. 5112–5116. doi: 10.1073/pnas.85.14.5112

Bayreuther K., Francz P.I., Gogol J. et al. Terminal differentiation, aging, apoptosis, and spontaneous transformation in fibroblast stem cell systems in vivo and in vitro. Annals of the New York Academy of Sciences. 1992. Vol. 663(1). P. 167–179. doi: 10.1111/j.1749-6632.1992.tb38660.x

Simons J.W. Genetic, epigenetic, dysgenetic, and non-genetic mechanisms in tumorigenesis. Critical Reviews in Oncogenesis. 1995. Vol. 6(3–6). P. 261–273.

Hirschmann-Jax C., Foster A.E., Wulf G.F. et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. USA. 2004. Vol. 101(39). P. 14228–14233. doi: 10.1073/pnas.0400067101

Rajagopolan H., Lengauer C. Aneuploidy and cancer. Nature. 2004. Vol. 432. P. 338–341. doi: 10.1038/nature03099

Hansemann D. Ueber patologische Mitosen. Arch. Pathol. Anat. Phys. Klin. Med. 1891. Vol. 119. P. 299–326. doi: 10.1007/BF01884400

Saunders W.S., Shuster M., Huang X. et al. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 303–308. doi: 10.1073/pnas.97.1.303

Gisselsson D., Jonson T., Yu C. et al. Centrosomal abnormalities, multipolar mitoses, and chromosomal instability in head and neck tumours with dysfunctional telomeres. Br. J. Cancer. 2002. Vol. 87(2). P. 202–207. doi: 10.1038/sj.bjc.6600438

Erenpreisa J.A., Cragg M.S., Fringes B. et al. Release of mitotic descendants by giant cells from irradiated Burkitt’s lymphoma cell line. Cell. Biol. Int. 2000. Vol. 24(9). P. 635–648. doi: 10.1006/cbir.2000.0558

Walen K.H. The origin of transformed cells. Studies of spontaneous and induced cell transformation in cell cultures from marsupials, a snail, and human amniocytes. Cancer Genet. Cytogenet. 2002. Vol. 133. P. 45–54. doi: 10.1016/S0165-4608(01)00572-6

Bayreuther K., Francz P.I., Gogol J. et al. Differentiation of primary and secondary fibroblasts in cell culture systems. Mutation Research. 1991. Vol. 256(2–6). P. 233–242. doi: 10.1016/0921-8734(91)90014-3

Sundaram M., Guernsey D.L., Rajaraman M.M. et al. Neosis: a novel type of cell division in cancer. Cancer Biol. Ther. 2004. Vol. 3(2). P. 207–218. doi: 10.4161/cbt.3.2.663

Navolanic P.M., Akula S.M., McCubrey J.A. Neosis and its potential role in cancer development and chemoresistance. Cancer Biol. Ther. 2004. Vol. 2(2). P. 71–72. doi: 10.4161/cbt.3.2.750

Sapun A.S., Kvitko O.V., Koneva I.I. et al. Epigeneticheskie mekhanizmy omolazhivaiushchey reparatsii stvolovykh kletok. Tsitologiia. 2011. Vol. 53(9). P. 747–748.

Sapun A.S., Kvitko O.V., Koneva I.I. et al. Spontaneous immortalization of rat fbroblasts during prolonged cultivation in vitro. Molecular and Applied Genetics: Proceedings. Vol. 13. Minsk, 2012. P. 118–125.

Sheiko Y. I., Kvitko O.V., Koneva I.I. et al. Study on effects of recombinant human lactoferrin on proliferation and apoptosis of cancer and immortalized cells. Molecular and Applied Genetics: Proceedings. Vol. 18. Minsk, 2014. P. 77–83.

Morris V.L., MacDonald I.C., Koop S. et al. Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin. Exp. Metastasis. 1993. Vol. 11(5). P. 430–436. doi: 10.1007/BF00132981

Kalashnikova M.M. Iavlenie klazmatoza v pecheni v norme i pri patologii. Biull. eks. biol. med. 1985. Vol. 100(9). P. 355–358.

Holliday R. The inheritance of epigenetic defects. Science. 1987. Vol. 238(4824). P. 163–170. doi: 10.1126/science.3310230

Rubin H. Cell damage, aging and transformation: a multilevel analysis of carcinogenesis. Anticancer Res. 1999. Vol. 19. P. 4877–4886. doi:

Kvitko O.V., Zhukova L.N., Koneva I.I. Antirakovyy effekt ekzogennykh nukleinovykh kislot. Doklady AN Belarusi. 1992. Vol. 36(7–8). P. 652–655.

Rubin H. The role of selection in progressive neoplastic transformation. Adv. Cancer Res. 2001. Vol. 83. P. 159–207. doi: 10.1016/S0065-230X(01)83006-2

Paus R., Botchkarev V.A., Botchkareva N.V. et al. The skin POMC system (SPS). Leads and lessons from the hair follicle. Ann. N. Y. Acad. Sci. 1999. Vol. 885(1). P. 350–363. doi: 10.1111/j.1749-6632.1999.tb08690.x

Amoh Y., Li L., Katsuoka K. et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc. Natl Acad. Sci. USA. 2005. Vol. 102(15). P. 5530–5534. doi: 10.1073/pnas.0501263102

Chakova N. N., Mikhalenko E. P., Polonetskaya S. N. et al. GST polymorphism and cytogenetic changes in lung tissues of lung cancer patients. Cytol. genet. 2009. Vol. 43(1). P. 38-41. doi: 10.3103/S0095452709010071