Cardiospecific deletion of β-catenin gene associated with an activity violation of signaling cascades involved in the development of myocardial hypertrophy

  • O. L. Palchevska Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03680, Kyiv, 150, Zabolotnoho St.
  • V. V. Balatskyi Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03680, Kyiv, 150, Zabolotnoho St.
  • L. L. Macewicz Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03680, Kyiv, 150, Zabolotnoho St.
  • O. O. Piven Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03680, Kyiv, 150, Zabolotnoho St.

Abstract

The aim of our study was to investigate the molecular mechanisms of hypertrophy response under cardiospecific β-catenin haploinsufficiency condition. Materials and methods. Studies were done with β-catenin condtional knockout mice (β-catflox/flox) and α-MHC-Cre-transgenic mice. To induce hypertrophy we used swimming test during 6 weeks. Using western-blot, we have analyzed the level of studied proteins. Results. It has been shown that the β-catenin haploinsufficiency is associated with increased signaling activity of MAPK, PI3-kinase-mTOR-dependent signaling cascades in both: with prolonged physical activity and without it. However, even with an increased activity of this signalling, β-catenin haploinsufficient mice expressed weaker hypertrophic response. Conclusions. The transcriptional activity of β-catenin is necessary for the proper interaction of signaling cascades during heart maturation and adaptation to stress.

Keywords: β-catenin, hypertrophy, Wnt-signalling, MAPK signalling, PI3-kinase-mTOR-dependent cascade, РКА-signalling, myocardium.

References

Nadal-Ginard B. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research. 2003. Vol. 92(2). P. 139–150

Kontaridis M. I., Geladari E. V., Geladari C. V. Pathways to myocardial hypertrophy. Introduction to Translational Cardiovascular Research. Springer, 2015. P. 167–186. doi: 10.1007/978-3-319-08798-6_10

Grigoryan T., Wend P., Klaus A., Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of b-catenin in mice. Genes Dev. 2008. Vol. 22(17). P. 2308–2341. doi: 10.1101/gad.1686208

Piven O. O. Signalling function of β-catenin is important at early stages of adult heart pathological hypertrophy. Visn. Ukr. Tov. Genet. Selekc. 2016. Vol. 14(1). P. 44-51.

Palchevska O. L., Balatskyi V. V., Macewicz L. L., Lukash L. L., Piven O. O. Signaling function of β-catenin during adult myocardium adaptation to physical training. Fakt. Eksp. Evol. Organ. 2015. Vol. 16. P. 225-229

Padala R.R., Karnawat R., Viswanathan S.B., et al. Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/β-catenin signaling network constitutively activate inter-pathway positive feedback loops. Mol Bio Syst. 2017. Vol. 13. P. 830–840. doi: 10.1039/c6mb00786d

Barry S.P., Davidson S.M., Townsend P.A. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008. V 40. P. 2023–2039. doi: 10.1016/j.biocel.2008.02.020

Lee C.-Y., Kuo W.W., Baskaran R., Day C.H., Pai P.Y., Lai C.H., Chen Y.-F., Chen R.-J., Padma V.V., Huang C.Y. Increased β-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes. Cardiovasc Pathol. 2017. Vol. 31. P. 9-16. doi: 10.1016/j.carpath.2017.07.003

Breuleux M., Klopfenstein M., Stephan C., Doughty C.A., Barys L., Maira S.-M., Kwiatkowski D., Lane H.A. Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther. 2009. Vol.8. P. 742–753. doi: 10.1158/1535-7163.MCT-08-0668

Heallen T., Zhang M., Wang J., Bonilla-Claudio M., Klysik E., Johnson R.L., Martin J.F. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011. No 332. P. 458–461. doi: 10.1126/science.1199010

Agah R., Frenkel P.A., French B.A., Michael L.H., Overbeek P.A., Schneider M.D. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 1997. No 100. P. 169–79.

Evangelista F.S., Brum P.C., Krieger J.E. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz. J. Med. Biol. Res. 2003. Vol. 36(12). P. 1751-1759.

Maniatis T., Fritsch E. F., Sambrook J. Molecular Cloning: A Laboratory Manual. Moskva: Mir, 1984. 425 p.

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. Vol. 227(5259). P. 680–685

Krüger M., Linke W.A. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil. 2006. V 27. P. 435–444. doi: 10.1007/s10974-006-9090-5

Palchevska O. L., Balatskii V. V., Andrejeva A. O., Macewicz L. L., Piven O. O., Lukash L. L. Studying of canonical Wnt-signaling in animals of different ageing groups under cardiac-specific embryonic ablation of β-catenin. Cytology and Genetics. 2015. Vol.49(1). P. 6 – 11. doi: 10.3103/S0095452715010107

Rose B.A., Force T., Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010. Vol. 90. P. 1507–1546. doi: 10.1152/physrev.00054.2009

Purcell N.H., Wilkins B.J., York A., Saba-El-Leil M.K., Meloche S., Robbins J., Molkentin J.D. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A. 2007. Vol. 104. P. 14074–14079. doi: 10.1073/pnas.0610906104