Identification of tubulin genes in amphidiploid representatives of the genus Brassica and their parent species
Abstract
Aim. To identify α-, β-, and γ-tubulin genes in the six most economically important Brassica species, as well as to establish their phylogenetic classification and clarify their evolutionary history. Methods. Genome-wide identification of tubulin gene sequences, phylogeny reconstruction methods, and comparative genomics approaches, including synteny analysis. Results. 229 functional tubulin genes were identified in six representatives of the Brassica genus, including Brassica oleracea, Brassica rapa, Brassica nigra, Brassica napus, Brassica juncea, Brassica carinata. Phylogenetic analysis of the of identified tubulin genes showed that Brassica α-tubulins are divided into two phylogenetic Classes, and β-tubulins into 5 main groups, which are also observed in other Brassicaceae. Representatives of the Brassica γ-tubulin subfamily did not exhibit isotype diversity and were phylogenetically closer to TUG1. The synteny analysis confirmed the significant conservation of the tubulin gene set in the analyzed Brassica species, including those of allopolyploid origin. Conclusions. It has been shown that the tubulin gene family in Brassica representatives is characterized by significant conservation and an evolutionarily stable set of genes even in allopolyploid species, while the existing diversity of tubulin isotypes is shaped by earlier events of whole-genome rearrangements, which are common to most Brassicaceae.
References
Warwick S. I. Brassicaceae in agriculture, In: Schmidt R., Bancroft I. (Eds), Genetics and Genomics of the Brassicaceae. Springer Science+Business Media; LLC, New York, NY, 2011. P. 33–65. https://doi.org/10.1007/978-1-4419-7118-0.
Gesch R. W., Isbell T. A., Oblath E. A., Allen B. L., Archer D. W., Brown J., Hatfield J. L., Jabro J. D., Kiniry J. R., Long D. S., Vigil M. F. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock. Ind. Crop. Prod. 2015. Vol. 75. P. 2–7. https://doi.org/10.1016/j.indcrop.2015.05.084.
Blume R. Y., Rakhmetov D. B., Blume Y. B. Evaluation of Ukrainian Camelina sativa germplasm productivity and analysis of its amenability for efficient biodiesel production. Ind. Crop. Prod. 2022. Vol. 187B. P. 115477. https://doi.org/10.1016/j.indcrop.2022.115477.
Gavazzi F., Pigna G., Braglia L., Giani S., Breviario D., Morello L. Evolutionary characterization and transcript profiling of beta-tubulin genes in flax (Linum usitatissimum L.) during plant development. BMC Plant Biol. 2017. Vol. 17. P. 237. https://doi.org/10.1186/s12870-017-1186-0.
Guadalupi C., Braglia L., Gavazzi F., Morello L., Breviario D. A combinatorial Q-locus and tubulin-based polymorphism (TBP) approach helps in discriminating Triticum species. Genes. 2022. Vol. 13. P. 633. https://doi.org/10.3390/genes13040633.
Rabokon A. M., Blume R. Y., Sakharova V. G., Chopei M. I., Afanasieva K. S., Yemets A. I., Rakhmetov D. B., Pirko Y. V., Blume Y. B. Genotyping of interspecific Brassica rapa hybrids implying β-tubulin gene intron length polymorphism (TBP/cTBP) assessment. Cytol. Genet. 2023. Vol. 57 (6). P. 538–549. https://doi.org/10.3103/S0095452723060075.
Lykholat Y. V., Rabokon A. M., Blume R. Ya., Khromykh N. O., Didur O. O., Sakharova V. H., Kabar A. M., Pirko Ya. V., Blume Ya. B. Characterization of β-tubulin genes in Prunus persica and Prunus dulcis for fingerprinting of their interspecific hy-brids. Cytol. Genet. 2022. Vol. 56 (6). P. 481–493. https://doi.org/10.3103/S009545272206007X.
Blume R. Y., Rabokon A. M., Pydiura M., Yemets A. I., Pirko Y. V., Blume Y. B. Genome-wide identification and evolution of the tubulin gene family in Camelina sativa. BMC Genomics. 2024. Vol. 25. P. 599. https://doi.org/10.1186/s12864-024-10503-y.
Hatje K., Keller O., Hammesfahr B., Pillmann H., Waack S., Kollmar M. Cross-species protein sequence and gene structure prediction with fine-tuned Webscipio 2.0 and Scipio. BMC Res. Notes. 2011. Vol. 4. P. 265. https://doi.org/10.1186/1756-0500-4-265.
Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016. Vol. 44 (W1). P. W232–235. https://doi.org/10.1093/nar/gkw256.
Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021. Vol. 49 (W1). P. W293–296. https://doi.org/10.1093/nar/gkab301.
Chen C., Wu Y., Li J., Wang X., Zeng Z., Xu J., Liu Y., Feng J., Chen H., He Y., Xia R. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant. 2023. Vol. 16. P. 1733–1742. https://doi.org/10.1016/j.molp.2023.09.010.
Blume R. Y., Hotsuliak V. Y., Nazarenus T. J., Cahoon E. B., Blume Y. B. Genome-wide identification and diversity of FAD2, FAD3 and FAE1 genes in terms of biotechnological importance in Camelina species. BMC Biotechnol. 2024. Vol. 24. P. 107. https://doi.org/10.1186/s12896-024-00936-4.
Yemets A., Shadrina R., Blume R., Plokhovska S., Blume Y. Autophagy formation, microtubule disorientation, and alteration of ATG8 and tubulin gene expression under simulated microgravity in Arabidopsis thaliana. npjMicrogravity. 2024. Vol. 10. P. 31. https://doi.org/10.1038/s41526-024-00381-9.
Lysak M. A., Mandakova T., Schranz M.E. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 2016. Vol. 30. P. 108–115. https://doi.org/10.1016/j.pbi.2016.02.001.