Development of a PCR test system for detecting feline coronavirus disease
Abstract
Aim. Development of an effective test system for diagnosing feline coronavirus disease based on reverse transcription polymerase chain reaction (RT-PCR). Methods. Polymerase chain reaction (PCR); reverse transcription polymerase chain reaction (RT-PCR); real-time RT-PCR; melting curve analysis; polyacrylamide gel electrophoresis; statistical methods. Results. A PCR test system with electrophoretic detection and a real-time PCR test system were developed for the detection of feline coronavirus (FCoV). The advantages of the real-time PCR test system were demonstrated, and its efficiency was evaluated. Using the real-time test system, diagnostic testing of 160 cats was conducted, revealing the presence of FCoV in 18 % of the examined animals. Conclusions. The high diagnostic efficiency of the real-time PCR test system allows its use for laboratory diagnosis of feline coronavirus disease. Although feline coronavirus disease is not classified as a seasonal illness, a correlation between the detection frequency of FCoV and the season was observed. The detection rate of FCoV was 28 % in spring, decreased to 11 % in summer, and increased again to 24 % in September. One of the possible reasons for these seasonal fluctuations may be the weakening of immunity in animals during autumn and spring, which could influence the risk of infection or virus reactivation.
References
Hagemeijer M. C., Rottier P. J., de Haan C. A. Biogenesis and dynamics of the coronavirus replicative structures. Viruses. 2012. Vol. 4. P. 3245–3269. https://doi.org/10.3390/v4113245.
Tekes G., Thiel H. J. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis. Advances in Virus Research. 2016. Vol. 96. P. 193–218. https://doi.org/10.1016/bs.aivir.2016.08.002.
Pedersen N. C. An Update on Feline Infectious Peritonitis: Diagnostics and Therapeutics. Vet. J. 2014. Vol. 201. P. 133–141. https://doi.org/10.1016/j.tvjl.2014.04.016.
Taharaguchi S., Soma T., Hara M. Prevalence of feline coronavirus antibodies in Japanese domestic cats during the past decade. J. Vet. Med. Sci. 2012. Vol. 74 (10). P. 1355–1358. https://doi.org/10.1292/jvms.11-0577.
Spada E., Carrera Nulla A., Perego R., Baggiani L., Proverbio D. Evaluation of Association between Blood Phenotypes A, B and AB and Feline Coronavirus Infection in Cats. Pathogens. 2022. 11. 917. https://doi.org/10.3390/pathogens11080917.
Kokkinaki K. C. G., Saridomichelakis M. N., Mylonakis M. E., Leontides L., Xenoulis P. G. Seroprevalence of and risk factors for feline coronavirus infection in cats from Greece. Comp. Immunol. Microbiol. Infect. Dis. 2023. 94. 101962. https://doi.org/10.1016/j.cimid.2023.101962.
Klein-Richers U., Hartmann K., Hofmann-Lehmann R., Unterer S., Bergmann M., Rieger A., Leutenegger C., Pantchev N., Balzer J., Felten S. Prevalence of Feline Coronavirus Shedding in German Catteries and Associated Risk Factors. Viruses. 2020. 12, 1000. https://doi.org/10.3390/v12091000.
Gao Y. Y., Wang Q., Liang X. Y., Zhang S., Bao D., Zhao H., Li S. B., Wang K., Hu G. X., Gao F. S. An updated review of feline coronavirus: Mind the two biotypes. Virus Res. 2023. Vol. 326, 199059. https://doi.org/10.1016/j.virusres.2023.199059.
Barker E. N., Tasker S. Advances in Molecular Diagnostics and Treatment of Feline Infectious Peritonitis. Adv. Small Anim. Care. 2020. Vol. 1. P. 161–188. https://doi.org/10.1016/j.yasa.2020.07.011.
Barker E. N., Tasker S., Gruffydd-Jones T. J., Tuplin C. K., Burton K., Porter E., Day M. J., Harley R., Fews D., Helps C. R. Phylogenetic analysis of feline coronavirus strains in an epizootic outbreak of feline infectious peritonitis. J. Vet. Intern. Med. 2013. Vol. 27 (3). P. 445–450. https://doi.org/10.1111/jvim.12058.
Pedersen N. C. An Update on Feline Infectious Peritonitis: Virology and Immunopathogenesis. Vet. J. 2014. 201. P. 123–132. https://doi.org/10.1016/j.tvjl.2014.04.017.
Tasker S., Addie D. D., Egberink H., Hofmann-Lehmann R., Hosie M. J., Truyen U., Belák S., Boucraut-Baralon C., Frymus T., Lloret A. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses. 2023. 15. 1847. https://doi.org/10.3390/v15091847.
Addie D., Covell-Ritchie J., Jarrett O., Fosbery M. Rapid Resolution of Non-Effusive Feline Infectious Peritonitis Uveitis with an Oral Adenosine Nucleoside Analogue and Feline Interferon Omega. Viruses. 2020. 12. 1216. https://doi.org/10.3390/v12111216.
Doenges S. J., Weber K., Dorsch R., Fux R., Hartmann K. Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis. J. Feline Med. Surg. 2016. Vol. 19. P. 344–350. https://doi.org/10.1177/1098612X15625354.
Kobialka R. M., Ceruti A., Bergmann M., Hartmann K., Truyen U., Abd El Wahed A. Molecular Detection of Feline Coronavirus Based on Recombinase Polymerase Amplification Assay. Pathogens. 2021. Vol. 10. 1237. https://doi.org/10.3390/ patho-gens10101237.
Barua S, Sarkar S., Chenoweth K., Johnson C., Delmain D., Wang C. Insights on feline infectious peritonitis risk factors and sampling strategies from polymerase chain reaction analysis of feline coronavirus in large-scale nationwide submissions. J Am Vet Med Assoc. 2024. Vol. 263 (1). P. 82–89. https://doi.org/10.2460/javma.24.03.0208.